Sequence Exercises: Motifs, Domains and Colocation

- 1. Using InterPro domain searches to identify unannotated kinesin motor proteins. Note: For this exercise use <u>http://giardiadb.org</u>
 - a. Identify all genes annotated as hypothetical in all *Giardia* assemblages. Use the full text search and look for genes with the word "hypothetical" in their product names.

Identify Genes b	ased on Text (product name, notes, etc.)
Organism 📀	select all clear all expand all collapse all reset to default
	select all clear all expand all collapse all reset to default
Text term (use * as wildcard) 📀	hypothetical
Fields 😯	Alias
	Cellular localization
	Community annotation
	EC descriptions
	Cene ID
	Cene notes
	Gene product
	GO terms and definitions
	Protein domain names and descriptions
	PubMed
	Similar proteins (BLAST hits v. NRDB/PDB)
	User comments
	select all clear all
torc	Text Add Step
(CI)	Step 1
	Get Answer

- b. How many of these hypothetical genes have a kinesin-motor protein PFAM domain?
- Add a step to the strategy. Go to the "Interpro Domain" search under similarity/pattern, start typing the work kinesin and it should autocomplete.

- c. Go to the gene page for GL50581_1589 and look at the protein feature section. Does this look like a possible motor protein?
 - Click on the ID for GL50581_1589 in the result table to go to the gene page. Scroll down to the protein section and mouse over the glyphs in the Protein Features graphic.

Transcript ID	11 Is	Track details		×	P	💵 Has TMHN	M J1	Protein Length	IT Protein Brows
GL50581_1589-t26_1	8.34	Accession:	PF00225			no	497	7	Interactive
		Description:	Kinesin Kinesin r	notor domain					
		Database:	PFAM		-				
GL50581_1589-t26_1		Coordinates:	13 361		_				· · · · · · · · · · · · · · · · · · ·
		Evalue:	7.40E-07		30	óo		400	
InterPro Domains SSF52540		Interpro:	IPR001752						
PF00225									
Transmembrane Dor HydropathyPlot Kyte-Doolittle hydr	nains ropathy	plot	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	un an	m	u m		w	
Transmembrane Dor HydropathyPlot Kyte-Doolitte hydr	nains ropathy	y plot	mm		m			v.	
Transmembrane Dor HydropathyPlot Fyte-Doolittle hydr BLASTP Hits Low Con <u>ple</u> xity Re	mains rosathy egions	1 plot	m	va		wwA		vn	
Transmembrane Dor HydropathyPlot Kyte-Doolittle hydr BLASTP Hits Low Conplexity Re SecondaryStructur SecondaryStructure	mains ropathy egions re	s plot	www	~~~~	~~~	wM		w	

- 2. Using regular expressions to find motifs in TriTrypDB: finding active trans-sialidases in *T. cruzi*. Note: for this exercise use <u>http://tritrypdb.org</u>
 - a. *T. cruzi* has an expanded family of trans-sialidases. In fact, if you run a text search for any gene with the word "trans-sialidase", you return over 4000 genes among the strains in the database!!! Try this and see what you get.
 - b. Not all of the genes returned in (a) are predicted to be active. It is known that active trans-sialidases have a signature tyrosine (Y) at position 342 in their amino acid sequence. Add a motif search step to the text search in 'a' to identify only the active trans-sialidases.
 - Write a regular expression that defines a protein sequence that starts with a methionine, and is followed by 340 of any amino acids, followed by a tyrosine 'Y'. Refer to <u>regular</u> <u>expression tutorial</u> if you need to.
 - Add Step Add Step 2 : Protein Motif Pattern Pattern 😢 ^M.{340}Y Text Add Step 4397 Gene Organism 2 select all | clear all | expand all | collapse all | reset to default Step 1 🗄 📃 Crithidia 🕂 🥅 Endotrypanum 🗄 📃 Leishmania 🗄 📃 Leptomonas Trypanosoma 🗄 📃 Trypanosoma brucei 🕂 🥅 Trypanosoma congolense + M Trypanosoma cruzi 📃 Trypanosoma evansi 🕀 🔲 Trypanosoma grayi 🗌 Trypanosoma rangeli 🗄 📃 Trypanosoma vivax select all | clear all | expand all | collapse all | reset to default Combine Genes in Step 1 with Genes in Step 2: Intersect 2 0 (1) 1 Minus 2 0 (1) 1 Union 2 © 🚺 2 Minus 1 I Relative to 2, using gend Prot Motif 691 Genes Run Step Text 4397 Ge \odot Add Step Step 2 Step 1
- <u>http://tritrypdb.org/tritrypdb/im.do?s=0d7be75a64dbc2bb</u>

3. Find Cryptosporidium genes with the ΥΧΧΦ receptor signal motif. Note: for this exercise use <u>http://cryptodb.org</u>

The YXX Φ (Y=tyrosine, X=any amino acid, Φ =bulky hydrophobic [phenylalanine, tyrosine, threonine]) motif is conserved in many eukaryotic membrane proteins that are recognized by adaptor proteins for sorting in the endosomal/lysosomal pathway. This motif is typically located in the c-terminal end of the protein.

a. Use the "protein motif pattern" search to find all *Cryptosporidium* proteins that contain this motif anywhere in the terminal 10 amino acids of proteins. (hint: for your regular expression, remember that you want the first amino acid to be a tyrosine, followed any two amino acids, followed by any bulky hydrophobic amino acid (phenylalanine, tyrosine, threonine). Refer to <u>regular expression</u> <u>tutorial</u> if you need to).

Identi	fy Genes based on Protein Motif Pattern
Pattern 🕜	
Organism 🚷	select all clear all expand all collapse all reset to default

b. How many of these proteins also contain at least one transmembrane domain.

c. What would happen if you revise the first step (the motif pattern step) to include genes with the sorting motif in the C-terminal 20 amino acids? (hint: edit the first step and modify your regular expression) <u>http://cryptodb.org/cryptodb/im.do?s=37e8b03ea8087b5a</u>

Revise Step 1 : Pro	otein Motif Pattern
	Pattern 🕢 Y[FTY].{0,16]}\$
	Organism ♥ select all clear all expand all collapse all reset to default ⇒ ■ Apicomplexa ⇒ © Cryptosporidium hominis ↓ ⇒ © Cryptosporidium hominis TU502 ⇔ © Cryptosporidium muris ↓ = © Cryptosporidium muris RN66 ⇒ © Cryptosporidium parvum ↓ = © Cryptosporidium parvum ↓ = © Gregarina ⊕ = © Gregarina ⊕ = © Chromenida select all clear all expand all collapse all reset to default
Transmb Dom 12155 Genes 120 Genes 282 Genes Step 1 Step 2	Add Step

4. Find fungal genes downstream of a regulatory DNA motif. For this exercise use: <u>http://fungidb.org</u>

Transcriptional start sites are often located within a certain distance upstream of the genes or gene clusters that they regulate. In fungi, DNA motifs are also important for regulation of processes linked to host cell invasion or production of secondary metabolites. Readily available genomic data facilitate the discovery of regulatory motifs via examination of orthologous sequences.

The goal of this exercise is to identify all genes harboring upstream CACGTG motif, known for its role in transcriptional regulation. We will start our search in an extensively studied model organism *Saccharomyces cerevisiae*, and expand our search to *Fusarium graminearum*. Here is a summary of the search strategy:

a. Find the CACGTG DNA motif in the Saccharomyces cerevisiae genome.

- Select the "Search for genomic segments (DNA motif)" menu from the Search menu and look for CACGTG in *S. cerevisiae*.

Identify Genomic Segments based on DNA Motif Pattern

- Your search should return 1906 DNA segments containing GACGTG motif. Next, let's look for putative regulatory targets of this motif by searching for genes that are located 600bp downstream of this sequence.
- b. Identify genes with the CACGTG motif located 600bp upstream of an open reading frame.

EuPathDB offers a colocation function to identify genomic features within a specified distance of each other.

- Click "Add Step". Choose "Run a new search for Genes" > "Taxonomy" > "Organism" and select "Relative to genomic location".
- Set up the colocation using the following guidelines:

Return each gene from step 2 whose upstream region (600bp) overlaps the exact region of a Genomic Segment in Step1 (CACGTG) and is on either strand.

G	enomic Colocat	ion ೮ 🔍	
Combine Step 1 and You had 1906 Genomic Segments in your	d Step 2 using relation r Strategy (Step 1). Your	ve locations in the genome r new Genes search (Step 2) returned 6918 Genes.	
"Return each Gene from Step 2 +) whose upstream region (6918 Genes in Step)	overlaps +) the	exact region of a Genomic Segment in Step 1 and is on either (1906 Genomic Segments in Step) Region	strand 🗘 "
Gene Exact ● Upstream: 600 bp Downstream: 1000 bp Custom: begin at: (start ?) • ? 1 bp		Genomic Segment Cascet Genomic Segment Genomic Segment Cupstream: 1000 bp Custom: begin at: start ? Hegin at: start ? Hegin at: stop ? Devend at: stop ? De	
	Submit		~

- Your search results should indicate that there are 473 genes that have *CACGTG* motif upstream of their reading frame.

c. Identify orthologs S. cerevisiae genes in Fusarium graminearum.

All EuPathDB sites offer "Transform by Orthology" function, which is a comparative genomics approach to identify gene orthologs.

This function uses known classifications, OrthoMCL algorithm, and BLAST similarity search to order protein-coding genes from available sequenced genomes into groups of orthologs based on their similarity across multiple species.

Use "Add step" to initiate transformation by orthology. Your search in *F. graminearum* should return 392 hits.

Lipid biosynthesis plays an important role during the invasion of the plant cell by this fungal pathogen. Use the text search to look for genes associated with the lipid biosynthesis pathway in *F. graminearum*.

		Add Step	×
Run a new Search for Transform by Orthology Add contents of Basket Add existing Strategy Filter by assigned Weight Transform to Pathways Transform to Compounds	Genes Genomic Segments SNPS ORFs	Text Text Gene models Annotation, curation and identifiers Annotation, coration and identifiers Genomic Location Taxonomy Orthology and synteny Phenotype Genetic variation Transcriptomics Sequence analysis Protein properties Protein targeting and localization Function prediction Pathways and interactions Immunology	(product name, notes, etc.)
			Close

Revise Step 4 : Text (product name, notes, etc.)

Organism 🖗	select all I clear all I expand all I collapse all I reset to default
organishi 🗸	
	Blastocladiomycetes
	Eurotiomycetes
	🕀 🔲 Pneumocystidomycetes
	🕂 📃 Pucciniomycetes
	🗄 📃 Saccharomycetes
	🗄 🔲 Schizosaccharomycetes
	🕂 🔳 Sordariomycetes
	🛱 🔳 Fusarium
	🗄 🗹 Fusarium graminearum
	🦾 🗹 Fusarium graminearum PH-1
	🖶 🔲 Fusarium oxysporum
	🗄 🔲 Fusarium verticillioides
	🗄 🔲 Magnaporthe
	🕀 🔲 Neurospora
	🛨 📃 Sordaria
	🕀 🔲 Trichoderma
	Tremellomycetes
	Ustilaginomycetes
	Zygomycetes
	select all clear all expand all collapse all reset to default
Text term (use * as wildcard) 📀	*lipid*

Examine returned results.

- Do all genes display word "lipid" in the gene product name?
- Click on the first gene listed: FGSG_15852. Look through the gene information page and determine the reason for which this gene is being displayed in your results.

d. Investigate GO enrichment and Metabolic pathways records via Analyze results tab.

Gene Ontology features three structured ontologies that describe gene products in terms of their (1) associated biological processes, (2) cellular components role, and (2) molecular functions in a *species-independent* manner.

Biological Process includes processes like the cell cycle, DNA replication, limb formation, etc. Cellular Component assigns gene function to location (for example, a gene product can function in an organelle and/or be a functional component of an enzyme complex). Molecular Function deals with the function/s carried out by a gene product.

It is not uncommon for the same gene product, especially if it belongs to multi-protein enzyme complex, to carry out multiple functions. In this case the same gene product may be identified in several molecular function that make up a biological process.

- Explore GO enrichment for cellular component via Analyze Results tab.
- How many GO terms were enriched in the Biological Process search?
- Sort results by the number of genes present in your search. Examine p-values for the results. Are these numbers consistent with your results?

Metabolic Enrichment function: Visualization of enzymatic and chemical flows within biosynthetic pathways.

How many metabolic processes were identified in your search?

Click on ec00564 - Glycerophospholipid metabolism

Find Pyruvate metabolism and identify Compound ID and a formula for Acetaldehyde.